

Materials in Cryo Condition

Production Technology Team Research and Development Center KOS LTD

2022.07

Background

; Stainless Steel AISI 302 in spring condition become static (Lost its ductility) during load test at temperature -65 to -40°C after exposing to Cryo temperature between -200 to -165°C for about 15 Min.

Purpose

- 1) Understanding the basic theory of spring static phenomena after exposing to Cryo condition.
- 2) Evaluate a better grade for Cryo Temperature.
- 3) Possibility to change the spring load test parameters.

Simple Answer

- ; It is normal for some material, when it expose to a Cryo temperature, the strength increase but in the same time the ductility is drop.
- ; It is occurred due to the phase transformation from austenite (γ) to martensite (α ').
- ; Several references also proposed that dislocation is hard to move at a very low temp.

Austenite – martensite (γ - α ') transformation in metastable austenitic STS

Metastable austenitic STS can be transformed to martensite by 2 methods :

- ① Cold working (Transformation induced plasticity) and,
- ② Expose to Cryo temperature (Below Ms temperature)
 - ※ It can be both in the same time (Cryo cold working).

 \times Ms temp. is defined as the temp. at which α' transformation begins to take place spontaneously.

Fig.1 - Graph of 304STS tensile strength exposing at cryo temp.

Fig. 2 - True Stress-Strain for AISI 302 and 301 STS from RT to -196℃

In Fig. 1, as test temp. lower, the α' qty' increase in the same true strain.
In Fig. 2, as test temp. lower, the true stress increase significantly in the same true strain.

Austenite – martensite (γ - α ') transformation in metastable austenitic STS <u>Concept :</u>

Fig. 3 – Schematic representation of the austenite to martensite transformation depending on the respective Gibbs free energy G versus temperature of Ms, Mf and Md30.

- 1) When the Gibbs free energy difference ΔG is not sufficient to cause spontaneous transformation of FCC, martensite may be formed by increasing ΔG through a mechanical deformation energy ΔG mech.
- 2) Cryo condition and mechanical energy during deformation is simply to increase the delta Gibbs free energy (Δ G to initiate and grow the martensite).

Austenite – martensite (γ - α ') transformation in metastable austenitic STS

Example of the Change Martensite (α ') in Cryo Condition (KOS Data) :

Fig. 4 – Comparison of α' quantity during cold working in Cryo condition and in RT

Conclusions : The change of strength and ductility of wire after or during soaking at cryo condition is due to the phase transformation ($\gamma \rightarrow \alpha'$). The trasformation can be accelerated by mechanical.

What is the Solution ?

1) Need to change the material to a grade that more stable in austenite condition (Less difficult to $\gamma - \alpha'$ transformation), either by spontaneous transformation or by mechanical.

Several way to indicate that material more γ stable (Ex. Ms temp., Md30 temp. or Stacking fault energy).

Ms : The temperature where γ - α' transform simultaneously.

- Md30 : Temperature where the amount of transform α' is 50% for 30% true strain.
- 1) Ms was calculated by equation below (Eichelmann) : Ms Temp. = 1350-1665(C+N)-28(Si)-33(Mn)-42(Cr)-61(Ni)
- 2) Md30 was calculated by equation below (Nohara) : Md30 Temp. = 551-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-29(Cu+Ni)-18.5(Mo)-68(Nb)

Disclaimer:

* There are several Ms Temp. eq and either of them can be used depend on the needs.* There are several Md30 Temp. eq and KOS is using Nohara as the most appropriate.

What is the Solution ? (Cont')

Table - Comparison of Ms and Md temperature of several grade material

	Chemical								Ms Temp, Eichelmann	Md30, Nohara	
Grade	С	Ν	Si	Mn	Cr	Ni	Cu	Мо	Nb	(°C)	(°C)
304DST	0.074	0.035	0.419	1.240	18.050	8.445	0.304	0.242	-	-158	-18
304H2P	0.073	0.041	0.440	1.087	18.252	8.331	0.298	0.181	-	-164	-18
302	0.073	0.041	0.480	1.271	18.213	8.021	0.278	0.173	-	-150	-10
316	0.055	0.017	0.402	1.577	16.793	10.564	0.344	2.026	-	-185	-83
2205	0.021	0.175	0.447	0.633	22.157	5.170	0.122	3.024	-	-258	-62
316N	0.067	0.208	0.293	1.296	16.631	10.038	0.365	2.026	-	-472	-157
A286	0.037	-	0.187	1.135	12.210	21.860	-	0.920	_	-601	-295

** The value of Ms and Md can be vary depend on the small difference of alloying and material condition (annealed finished or cold work finished)*

- Ms and Md expressed the stability of material in Cryo condition and during mechanical working.
- The lower the Ms and Md, the more stable.
- Material that tested below Ms temp, will become static due to the spontaneous transformation of $\gamma \rightarrow \alpha'$.

Conclusions

1) For AISI 302 STS, Ms Temp. is -150°C. It means, spontaneous $\gamma \rightarrow \alpha'$ might occur that cause spring become static.

2) AISI 316 STS is more stable and can be exposed up to -185 °C. However, in the same wire size of wire, the wire strength would be lower.

3) AISI 316N STS and Duplex 2205 might be a better option where better strength and can be exposed to a much lower temperature.

4) If the needs is only temperature up to -65°C, exposing material to temperature up to -200°C is NOT needed. So, if the test can be performed only at -65°C, NO need to change the material.